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In this work, the problem of illuminating a thermoelastic half space by a laser beam is
solved by utilizing the fractional order theory of thermoelasticity. The assumptions that the
illuminated surface is exposed to a cooling effect and free from traction are considered. The
problem is solved using Laplace transform techniques. The inverse Laplace transform has
been calculated in numerical fashion. The obtained results are presented graphically.
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1. Introduction

In the classical uncoupled theory of thermoelasticity, the heat equation is devoid of any terms
symbolizing the elastic state of the body, which contradicts the truth that the variation in the
elastic state produces thermal effects and vice versa. In addition, the heat equation built upon
Fourier’s law, and thus its nature being parabolic, leads to propagation of thermal waves with
an infinite speed. According to physics, the previous facts may lead to inaccurate results, which
prompted many of those interested in thermoelasticity to rectify the shortcomings of this theory.
As a serious endeavor to address the flaws of the former theory, Biot (1956) derived the classical
coupled theory of thermoelasticity (CTE). In Biot’s theory, the coupling between strain fields
and temperature was taken into account but its heat equation was still of a parabolic type,
which was related to the reliance on Fourier’s law.
Lord and Shulman (1967) proposed the generalized theory of thermoelasticity with one rela-

xation time by employing the Cattaneo (1948) approach. The energy equation of this theory was
of a hyperbolic type, which implied a finite velocity for heat propagation and thus the weakness
of Biot’s model was tackled. Among the significant studies applied this theory were the proofs
of uniqueness theorems by Ignaczak (1979, 1982) and Sherief (1987). The analytical solution
adequate for small times for an infinite elastic medium heated by a continuous heat source was
obtained by Sherief (1986).
Recently, considerable proceeding has been detected in applications employing fractional

calculus. In many branches of science, several mathematical models that describe physical phe-
nomena have been adjusted by utilizing fractional calculus (Machado et al. (2013)). Caputo and
Mainardi (1971a,b) and Caputo (1974) used fractional derivatives to the describe viscoelastic
substances and did not observe a contradiction with the experimental results. A theoretical
foundation for using fractional calculus in viscoelasticity was introduced by Bagly and Torvik
(1983).
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In thermoelasticity, fractional calculus was utilized to modify the heat equation and then
many models were introduced. Povstenko (2005) employed fractional derivatives to formula-
te the quasi-static uncoupled model of thermoelasticity. Povstenko (2009) did a survey study
in thermoelasticity based on heat equations whose time and space derivatives were fractional.
Youssef (2010) introduced the fractional order generalized thermoelasticity theory and applied
this theory to a problem of an elastic semi-infinite medium exposed to a thermal shock. As
a generalization to both coupled and generalized theories, Sherief et al. (2010) formulated the
fractional order theory of thermoelasticity. Using Sherief’s model, the solution of a thermoela-
sticity problem was successfully obtained for a semi-infinite medium possessing three different
boundary conditions by applying the state space approach and the Laplace transform (Kothari
and Mukhopadhyay, 2011). Sherief and Abd El-Latief (2013) solved a one-dimensional thermal
shock problem for a semi-infinite body whose thermal conductivity was variable. They also ap-
plied the same theory to obtain a solution to a problem of a 1D semi-infinite medium by using
various forms of functions representing the thermal shock. Raslan (2014, 2015, 2016) applied
Sherief’s theory to study the thermoelasticity problem for different mediums and obtained some
significant results.

When a solid is illuminated by a pulsed laser, a localized temperature increase due to ab-
sorbed power, which in turn produces thermal expansion and generates a thermoelastic wave.
McDonald (1990) discussed generation of thermoelastic waves in solids created by laser illumina-
tion having a Gaussian profile. Ezzat et al. (2012) deduced an ultrafast fractional thermoelasticity
model to study heat conduction in a thermoelastic thin metal film illuminated by a femtosecond
laser pulse. Henain et al. (2014) studied the illumination of the surface of a thermoelastic 2D
semi-infinite target by employing the Lord and Shulman theory. Allam and Tayel (2017) solved
the problem of heating a thermoelastic non-homogeneous isotropic half space by a pulsed laser.

The purpose of this paper is to study the effect of the fractional parameter on a half-space
illuminated uniformly by a laser beam and exposed to heat losses by employing the fractional
order theory of thermoelasticity. The medium surface is taken as traction free. The copper
material has been selected to obtain numerical results that are shown graphically.

2. Problem formulation and basic equations

Consider a homogeneous, isotropic thermoelastic semi-infinite target of density ρ, Lamé’s con-
stants λ and µ, thermal conductivity k, thermal relaxation time τ0, absorption coefficient A0
and specific heat at constant strain CE . The medium, occupying the region z  0 and initially
at uniform temperature T0. The surface z = 0 is uniformly illuminated by a laser beam and
considered to be traction free, in addition it is exposed to heat losses. The Cartesian coordinates
(x, y, z) will be employed in the solution with the z-axis pointing vertically into the medium.

Fig. 1. Geometry of the target and heating process

The fundamental equations for a linear, homogeneous and isotropic thermoelastic body in
the absence of body forces and heat source was derived by Sherief et al. (2010):
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— The energy equation

k∇2T =
(

1 + τ0
∂α

∂tα

) ∂

∂t
(ρCET + γT0e) (2.1)

where T is the absolute temperature, T0 is chosen such that |(T −T0)/T0| ≪ 1, α is the order of
the time fractional derivative in the Caputo sense, such that 0 ¬ α ¬ 1, γ = (3λ + 2µ)αT and
αT is the coefficient of linear thermal expansion.

— The equation of motion

σij,j = ρ
∂2ui
∂t2

(2.2)

where σij are components of the stress tensor and ui are components of the displacement vector.

The heating process is chosen to be a homogeneous illumination, and thus the problem will
be a one-dimensional, which gives the displacement components

ux = 0 uy = 0 uz = w(z, t) (2.3)

Thus, the strain components take the form

ezz =
∂w

∂z
exx = eyy = exy = exz = eyz = 0 (2.4)

The volume dilatation e and the Laplace operator will be given by

e = ezz + exx + eyy =
∂w(z, t)

∂z
∇2(·) = ∂

2

∂z2
(·) (2.5)

The stress components become

σzz = 2µ
∂w

∂z
+ λe− γ(T − T0) σxx = σyy = λe− γ(T − T0)

σxy = σxz = σzy = 0
(2.6)

Substituting Eqs. (2.6) into Eq. (2.2) and using (2.3), one gets

(2µ+ λ)
∂2w

∂z2
− γ ∂T
∂z
= ρ
∂2w

∂t2
(2.7)

Differentiating Eq. (2.7) with respect to z, we obtain

(2µ+ λ)∇2e− γ∇2T = ρ∂
2e

∂t2
(2.8)

The boundary conditions at the irradiated surface

−k∂T
∂z

∣

∣

∣

∣

∣

z=0

=
(

1 + τ0
∂α

∂tα

)

qz σzz
∣

∣

z=0
= 0 (2.9)

with qz = A0q0φ(t)−hθ(0, t) and θ = T−T0, where qz represents the heat flux in the z direction,
q0 is the intensity of the laser beam, φ(t) is a function describing the laser pulse profile, h is the
heat transfer coefficient responsible for cooling the surface, and θ(0, t) is the surface temperature
(Hassan et al., 1996).
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The initial conditions of the problem are

θ(z, t)
∣

∣

t=0
=
∂θ(z, t)

∂t

∣

∣

∣

∣

∣

t=0

= 0 w(z, t)
∣

∣

t=0
=
∂w(z, t)

∂t

∣

∣

∣

∣

∣

t=0

= 0

σij(z, t)
∣

∣

t=0
=
∂σij(z, t)

∂t

∣

∣

∣

∣

∣

t=0

= 0

(2.10)

The governing equations will take a more appropriate form by considering the following non-
dimensional variables

(z∗, w∗) = c1η(z,w) τ∗0 = c
2α
1 η
ατ0 t∗ = c21ηt h∗ =

h

c1ρCE

q∗0 =
γq0

(λ+ 2µ)c1ρCE
σ∗ij =

σij
µ

θ∗ =
γ(T − T0)
λ+ 2µ

(2.11)

where

c21 =
λ+ 2µ

ρ
η =
ρCE
k

For simplicity of writing, we will drop the stars of all variables. Thus, Eqs. (2.1) and (2.8),
will take the form

∇2θ =
(

1 + τ0
∂α

∂tα

) ∂

∂t
(θ + εe) ∇2e−∇2θ = ∂

2e

∂t2
(2.12)

Using Eq. (2.11), the stress components will be

σzz = β
2(e− θ) σxx = σyy = ge− β2θ (2.13)

where

β2 =
λ+ 2µ

µ
g =
λ

µ
ε =

T0γ
2

ρcE(λ+ 2µ)

3. Problem solution

The basic equations and the initial conditions support the idea of seeking the solution using the
Laplace transform technique defined as (Debnath and Bhatta, 2015)

f(z, s) =

∞
∫

0

f(z, t)e−st dt (3.1)

Thus, Eq. (2.12) will take the form

D2θ = (s+ τ0s
α+1)(θ + εe) (D2 − s2)e−D2θ = 0 (3.2)

Eliminating e or θ between Eqs. (3.2), we obtain

(D4 −BD2 + C){θ, e} = 0 (3.3)

where

B = s2 + (s+ τ0s
α+1)(ε+ 1) C = s2(s+ τ0s

α+1) D =
d

dz
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Equation (3.3) can be reformulated as

(D2 − k21)(D2 − k22){θ, e} = 0 (3.4)

where k2i (i = 1, 2) are the roots of the following auxiliary equation

k4 −Bk2 + C = 0 (3.5)

Solving Eqs. (3.4), we obtain

θ =
2
∑

i=1

Die
−kiz e =

2
∑

i=1

Eie
−kiz (3.6)

Substituting Eqs. (3.6) into Eq. (3.2)1 yields

Ei =
k2i − s(1 + τ0sα)
εs(1 + τ0sα)

Di i = 1, 2 (3.7)

Thus, Eqs. (3.6) take the form

θ =
2
∑

i=1

Die
−kiz e =

2
∑

i=1

k2i − s(1 + τ0sα)
εs(1 + τ0sα)

Die
−kiz (3.8)

Using Eq. (2.5)1 and integrating (3.8)2 with respect to z, it follows

w(z, s) =
2
∑

i=1

−k
2
i − s(1 + τ0sα)
εski(1 + τ0sα)

Die
−kiz (3.9)

Substituting by Eqs. (3.8) into Eqs. (2.13), after applying (3.1), we obtain

σzz = β
2
2
∑

i=1

(k2i − s(1 + τ0sα)
εs(1 + τ0sα)

− 1
)

Die
−kiz

σxx = σyy =
2
∑

i=1

(

β2
k2i − s(1 + τ0sα)
εs(1 + τ0sα)

− g
)

Die
−kiz

(3.10)

The boundary conditions after applying (2.11) and (3.1) become

−dθ
dz

∣

∣

∣

∣

∣

z=0

= (1 + τ0s
α)qz σzz

∣

∣

z=0
= 0 (3.11)

with qz = A0q0φ(s) − hθ(0, s), where φ(s) and θ(0, s) are the laser profile and the surface
temperature, respectively, in the transformed domain.

Substituting Eqs. (3.8)1 and (3.10)1 into Eqs. (3.11), one gets

2
∑

i=1

kiDi = (1 + τ0s
α)(A0q0φ(s)− hθ(0, s))

2
∑

i=1

fi(s)Di = 0 (3.12)

where

fi(s) =
k2i − s(1 + τ0sα)
εs(1 + τ0sα)

− 1 i = 1, 2
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Thus, from Eqs. (3.12) we obtain

D1 =
f2(1 + s

ατ0)[−A0q0φ(s) + θ(0, s)h]
k1f2 − k2f1

D2 =
f1(1 + s

ατ0)[−A0q0φ(s) + θ(0, s)h]
−k1f2 + k2f1

(3.13)

Finally, to obtain θ(0, s) substituting D1 and D2 into Eq. (3.8)1 and set z = 0, one gets

θ(0, s) =
A0q0φ(s)(1 + s

ατ0)(f1 − f2)
f1[h(1 + sατ0)− k2]− f2[h(1 + sατ0)− k1]

(3.14)

4. Inverse Laplace transformation

Now we will execute an inverse transformation for temperature, displacement and thermal stres-
ses. Due to intricacy of obtaining the physical variables in the time domain by analytical me-
thods, we will utilize a numerical method represented in the Riemann-sum approximation by
applying the formula

f(t) =
ekt

t

[1

2
f(k) + Re

N
∑

n=1

(−1)nf
(

k +
inπ

t

)]

(4.1)

where Re is the real part and i =
√
−1 is the imaginary unit and N is an adequately large integer

indicating the number of terms. For faster convergence, many numerical experiments discussed
the value of k and showed that it would be satisfactory when: kt = 4.7 (Tzou, 1995).

5. Application and computation

As an illustrative example, the computations have been carried out on a semi-infinite medium
of the copper material, assuming the value of the relaxation time to be τ0 = 75 · 10−5 s. We
consider the surface of the medium to be illuminated by a laser pulse having the maximum
density q0 = 10

4W/m2, and the temporal profile takes the form of a Gaussian distribution

φ(t) = exp
[

−
( t− t0
p

)2]

(5.1)

where t0 is the time at which the distribution φ(t) gives the maximum value, p is the time at
which φ(t) reduces to 1/e.
Now, the temperature, displacement and thermal stresses will be calculated considering the

following parameters (Henain et al., 2014): T0 = 293K, ρ = 8954 kg/m
3, αT = 1.78 · 10−5K−1,

p = 10−3 s, CE = 383.1 J/(kgK), h = 200W/(m
2K), µ = 3.86 · 1010 kg/(m s2), λ = 7.76 ·

1010 kg/(m s2), t0 = 3 · 10−3 s, k = 386W/(mK), A0 = 0.01.

6. Results and discussion

Figure 2a represents in curve (a) the laser pulse profile whose maximum value is at t = 0.003,
and curves representing the temporal surface temperature calculated for h = 0 and α = 1, 0.9,
0.8, 0.5. It also includes a curve representing the temporal surface temperature of the CTE theory
(τ0 = 0). It is shown that the temperature firstly increases with time, which can be attributed to
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the increased absorbed energy, which overcompensates the heat losses due to heat conductivity
inside the material. At the time at which the absorbed power equals the conducted one inside
the material, the temperature attains its maximum value, this explains why the maximum has
occurred at a later time in the cases α = 1 and α = 0.5, 0.8, 0.9. After reaching the maximum,
the absorbed power cannot compensate the losses, which leads to a decreasing temperature.
After switching off the laser pulse, the absolute value of the gradient of temperature becomes
smaller than that during the laser pulse, which is due to the absence of laser radiation, which
leads to a smaller gradient of temperature and, therefore, small conduction of the heat energy. It
is also noted that for α = 0.5, 0.8, 0.9 the maximum of temperature occurs at a later time than
in the case of α = 1, which can be attributed to the velocity of the heat waves which become
faster with decreasing α. Thus, it takes longer to compensate the heat losses by the conductivity
and also gives the maximum value of the temperature smaller than α = 1. It is clearly noted that
the curve of α = 0.5 coincides with the carve of CTE, which indicates that the curves α ∈ [0, 1)
follow the behavior of the CTE theory.

Figure 2b represents in curve (a) the laser pulse profile whose maximum value is at t = 0.003,
and the other curves showing the temporal surface temperature calculated for h 6= 0 and
α = 1, 0.5. A very slight shift in the maximum temperature towards greater t is seen in the
figure. This is owing to the cooling effect which contributes together with conductivity of the
material to support heat losses and thus the surface temperature approaching to zero at the end
of the laser pulse. It is also noted a weak effect for the parameter α compared with Fig. 2a.

Fig. 2. The temporal profile of the laser pulse and the surface temperature calculated for: (a) h = 0,
(b) h 6= 0

Fig. 3. The temperature θ calculated for h = 0 and (a) α = 1, (b) α = 0.5

Figure 3a explains the spatial temperature θ computed for α = 1, h = 0 at different times.
The nature of the hyperbolic type as in the Cattaneo model is clearly seen, as the figure reveals
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a finite velocity expressing through the strong gradient at different locations. In the figure, the
temperature has the maximum value at t = 3 · 10−3, which can be illustrated in view of Fig. 2a,
where the maximum value of the surface temperature is next to this time. It is also seen that
the temperature moves deeper into the medium as the time increases.

Figure 3b explains the temperature θ versus z computed for α = 0.5, h = 0 at different times.
As seen in the figure, the temperature at t = 4 ·10−3 is greater than the that at t = 3 ·10−3. This
can be interpreted from Fig. 2b, where the maximum value of the surface temperature occurs
near the time (t = 4 · 10−3). The figure reveals that θ is reduced in the vicinity of the irradiated
surface and penetrates to greater z values than the corresponding ones given in Fig. 3a. This
behavior is owing to the infinite velocity, which characterizes the heat waves for α ∈ [0, 1).
Figure 4a explains the temperature θ versus z computed for α = 1, h 6= 0 at diverse times.

The figure reveals that the maximum of θ is not on the illuminated surface, but it is shifted
towards higher z values. This behavior is due to the cooling effect on the illuminated surface
and the laser power which is absorbed and transferred inside the target, causing an increase of
the temperature. It is also seen a finite velocity for the temperature.

Figure 4b explains the temperature θ versus z computed for α = 0.5, h 6= 0 at diverse times.
The figure displays the same behavior of Fig. 4a for the surface temperature, but it differs in
the temperature penetrating to greater z values at the same times, This is due to the infinite
velocity of the heat waves.

Fig. 4. The temperature θ calculated for: (a) α = 1, h 6= 0 and (b) α = 0.5, h 6= 0

Fig. 5. The temperature θ with diverse values of α at t = 4 · 10−3 and h = 0

Figure 5 illustrates the temperature θ versus z with diverse values of α at t = 4 · 10−3 in the
absence of cooling. The figure shows a clear effect of the parameter α on temperature where,
for α = 1, the finite velocity of θ clearly appears. By decreasing the value of α, the temperature
penetrates to a great z value into the target. This behavior is owing to the infinite velocity,
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which appears for α = 0.5, 0.8, 0.9. As in Figs. 2a and 3a, the curve of α = 0.5 coincides with
the curve of the CTE theory, and for 0 ¬ α < 1 the curves follow the behavior of CTE theory.
Figure 6 illustrates the displacement w versus z computed for α = 1, h = 0 at diverse times.

It is seen that, the displacement is possess a negative values and located in the vicinity of the
irradiated surface. Then, it moves towards greater z-value until vanishing, this is owing to the
heating effect which allowed the expansion to occur in the upward direction while the positive
z-axis is considered downwards. As t increases, the displacement moves deeper inside the target.

Fig. 6. The displacement w calculated for α = 1 and h = 0

Figure 7a illustrates the displacement w versus z computed for h 6= 0 at t = 4 ·10−3 with the
parameter α. The figure reveals that the parameter α has a slight effect on w, which is owing
to the cooling effect, which gives the temperature the same behavior for the two values α = 1,
α = 0.5, and makes the expansion occur almost equally.

Figure 7b illustrates the displacement w versus z computed for h = 0 at t = 4 · 10−3 with
α as the parameter. The figure displays that α have a clear effect on w in the absence of cooling.
For diverse α values, the displacement starts having different values at the irradiated surface
and increasing for greater α. This can be attributed to the heating effect which differs for the
values α = 1 and α = 0.5, 0.8, 0.9, as seen in Fig. 5. The figure shows an exact coincidence
between the curves of α = 0.5 and of the CTE theory.

Fig. 7. The displacement w with diverse values of α at t = 4 · 10−3 and: (a) h 6= 0, (b) h = 0

Figures 8a and 8b illustrate the stress σzz computed for h = 0 at diverse times for α = 1 and
α = 0.5, respectively. The figures can be explained in view of Eq. (2.14) where, at a small time,
θ has a greater effect than e (gradient of w) and, therefore, the stress takes negative values.
By increasing the time, e becomes more effective near the illuminated surface, which grants
the stress to take positive values. By penetrating more into the target, e stops growing and
temperature becomes more effective, which grants the stress to take negative values. It is noted



498 I.M. Tayel, A.F. Hassan

that the stresses follow the behavior of temperature, and the curves display a clear effect for the
parameter α.

Fig. 8. The stress σzz calculated for h = 0 and (a) α = 1, (b) α = 0.5

Figures 9a and 9b illustrate the stress σzz computed for h 6= 0 at diverse times for α = 1
and α = 0.5, respectively. The curves display analogous behavior as in Figs. 8a and 8b, except
that the values σzz are much smaller than the corresponding ones in Figs. 7b and 8a, which is
due to the cooling effect.

Fig. 9. The stress σzz calculated for: (a) α = 1 and h 6= 0, (b) α = 0.5 and h 6= 0

Figure 10 illustrates the stress σzz versus z computed for h = 0 at t = 4 · 10−3 with α as
the parameter. The figure shows a clear effect of α on the stresses, especially when following the
behavior of the temperature.

Fig. 10. The stress σzz with diverse values of α at t = 4 · 10−3 and h = 0
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7. Conclusion

In this paper, we discussed the problem of heating the surface of a homogeneous, isotropic
thermoelastic semi-infinite medium by uniform illumination of a laser beam in the presence of the
cooling effect. The problem has been solved using the fractional order theory of thermoelasticity.
From the results discussed above, it can be concluded that:

• For α = 1, the waves propagate with a finite velocity representing a hyperbolic type as
in the generalized theories of thermoelasticity, and do not contradict with the well-known
physical behavior. For α ∈ [0, 1), the waves propagate with an infinite velocity representing
the classical coupled theory of thermoelasticity, which is more pronounced for α = 0.5.

• The parameter α has a clear effect on all variables in the absence of cooling and a slight
effect in the presence of cooling.

• The cooling coefficient can play a main role in controlling the effect of the laser power.
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